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Abstract

Code obfuscation is a popular technique used by white-
as well as black-hat developers to protect their software
from Man-At-The-End attacks. A perennial problem has
been how to evaluate the power of different obfuscation
techniques. However, this evaluation is essential in order
to be able to recommend which combination of techniques
to employ for a particular application, and to estimate how
long protected assets will survive in the field. We describe a
system, RevEngE, that generates random obfuscated chal-
lenges, asks reverse engineers to solve these challenges
(with promises of monetary rewards if successful), monitors
and collects data on how the challenges were solved, and
verifies the correctness of submitted solutions. Finally, the
system analyzes the actions of the engineers to determine
the sequence and duration of techniques employed, with the
ultimate goal of learning the relative strengths of different
combinations of obfuscations.

1 Introduction
Code Obfuscation seeks to protect valuable assets con-

tained in software from those who have full access to it by
making the software difficult to analyze. An obfuscator O
applies a sequence of code transformations T1 ◦T2 ◦T3 ◦ . . .
to an input program P containing an asset a, transforming it
into a program P ′ = O(P ), such that P and P ′ are seman-
tically identical, but extracting a from P ′ is more difficult
than extracting a from P . Common assets include crypto-
graphic keys, proprietary algorithms, security checks, etc.
Obfuscating transformations are also used to induce diver-
sity: given an original program P , a diversifying obfusca-
tor generates a large number of semantically identical but
syntactically different programs {P ′

1, P
′
2, . . .}. Diversity is

a defense against class attacks, where a single attack can
successfully target all programs protected with a particular
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Figure 1: System Overview.

technique.
Attacks on obfuscation (known as reverse engineering

or deobfuscation) aim to defeat the obfuscating transforma-
tions by extracting a close facsimile of the asset a from P ′.

Much work has gone into developing methods to evalu-
ate obfuscating transformations. Fundamental questions we
may want to ask include (a) “how long will asset a survive
in the field in a program P ′ that has been protected with
obfuscating transform T ?”; (b) “how do transformations T1
and T2 compare with respect to their protective power and
performance degradation?”; and (c) “what level of diversity
can transformation T induce?”

Unfortunately, the validity of any theoretical models we
develop to answer such questions will ultimately depend on
how we define the power of the adversary.

In the project we report on here, we present a system,
RevEngE (Reverse Engineering Engine), designed to build
models from the behavior of reverse engineers. Figure 1
shows an overview of the system. Specifically, RevEngE
generates a secret random program p0.c (point 1 in Fig-
ure 1) and transforms it with a variety of obfuscating trans-
formations to a program p1.c (point 2) to create a collec-
tion of reverse engineering challenges. These challenge
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programs are made available to reverse engineering experts
anywhere to solve (point 3). Experts download the chal-
lenge p2.exe into a virtual machine (point 4) equipped with
a data collection subsystem that monitors and stores the en-
gineers’ behavior as they attempt the challenges. The re-
verse engineers submit a de-obfuscated solution p3.c which
is checked for correctness (point 5). To act as an incentive
for accomplished reverse engineers to participate, substan-
tial monetary awards are handed out to successful partici-
pants. The recorded user actions are analyzed (point 6) to
create reverse engineering attack models, such as visualiza-
tions, trees, and Petri nets. The anonymized data set will be
made available to the community for further analysis.

This paper is organized as follows. Section 2 discusses
prior work on code obfuscation. Section 3 presents the de-
sign of RevEngE. Section 4 presents an evaluation of the
system, and Section 5 concludes.

2 Related Work
We will next discuss prior work on obfuscation, obfus-

cation evaluation techniques, and the use of challenge prob-
lems to advance computer security.

2.1 Obfuscation

Obfuscating code transformations to protect assets in
software date back at least to the early 1990s [17]. Progress
was initially driven by the needs to protect cryptographic
operations in Digital Rights Management systems [20, 12]
and to hide algorithms in easily decompilable languages
like Java [16]. Diversification also motivated engineers,
both to protect operating system mono-cultures against at-
tacks by malware [13], and, interestingly, to protect mal-
ware from detection [27].

The literature is rife with descriptions of obfuscating
code transformations [15]. They typically fall in three cate-
gories: control flow, data, and abstraction transformations.
Examples of control flow transformations include control
flow flattening which removes existing control flow [33]
and opaque predicate insertion which adds bogus control
flow [16]. An extreme version of flattening is virtualiza-
tion [36], in which the obfuscator generates a random vir-
tual instruction set (V-ISA) for the target program P , trans-
lates P into this V-ISA, and generates a interpreter that
executes programs in the V-ISA. Data obfuscations trans-
form variables into a different representation, for example
by encrypting them, xor:ing them with a random constant,
or converting them into a representation based on Mixed
Boolean Arithmetic [38]. Examples of abstraction transfor-
mations, finally, include class hierarchy flattening [18] and
traditional optimizing transformations such as inlining, out-
lining, and loop unrolling.

2.2 Analyzing Obfuscation Resilience

There exist many obfuscating transforms and reverse en-
gineering methods. Some are known through the academic
literature, others are kept proprietary by purveyors of obfus-
cation tools, nation-states, and hackers. Furthermore, there
are innumerable ways to combine such methods [19].

Evaluating the efficacy of strategies for obfuscation and
reverse engineering has proven to be difficult: for a given
obfuscation, many reverse engineering techniques might
counter it, and for a given reverse engineering technique
many obfuscations can render it ineffective.

2.2.1 Normative Evaluation
Some work attempts to reduce the complexity of an ob-

fuscation technique to a known hard problem [16]. For
example, it has been argued that opaque constants can be
based on hard problems [31]. Unfortunately, this type of ar-
gument is fraught with issues. For example, just because a
problem is hard in the worst case does not mean that a ran-
dom instance will be, or that probabilistic algorithms cannot
give an acceptable solution in reasonable amounts of time,
or that the size of the problem will be sufficient. Addition-
ally, assumptions made for normative evaluation—such as
assuming static analysis only—often do not align with real
world techniques. Finally, the human element and intuition
is not captured by normative evaluation.

2.2.2 Software Metrics
It has been argued [16] that some software engineer-

ing metrics, such as control flow complexity, are related to
the difficulty of reverse engineering an obfuscated program.
However, this notion does not hold much promise, as empir-
ical studies have shown no correlation between such metrics
and human ability to reverse engineer [30].

2.2.3 Empirical Studies
Empirical analysis seeks to demonstrate the resilience of

an obfuscation technique by testing it against reverse engi-
neering attacks. Generally, empirical analysis focuses on
two questions:

1. How well does an obfuscation technique resist an au-
tomated attack, using a particular tool or code analysis
algorithm?

2. How well does an obfuscation technique resist a hu-
man attacker attempting to reverse engineer the pro-
tected code?

For the first question, researchers generate obfuscated
code with an obfuscator and then run an automated tool on
that code [2, 4, 3]. Success metrics include whether the au-
tomated tool extracted the protected asset or not, and the
amount of resources (time and memory) consumed.



2.2.4 Human Studies
Ceccato et al. [8] argue that there is a ”Need for More

Human Studies to Assess Software Protection.” Several
such experiments have been carried out. In [10], Ceccato
et al. conducted experiments to analyze the potency of an
identifier renaming transform using Masters and PhD stu-
dents as subjects. In [9] they expanded upon this earlier
work with more students and more transforms. Viticchié et
al. [32] conducted a similar experiment, wherein students
were tasked with reverse engineering the VarMerge trans-
form. In all of these experiments, the authors gave sub-
jects particular reverse engineering tasks to accomplish on
obfuscated pieces of software as well as a baseline, non-
obfuscated piece of software for comparison. In each case,
the authors found statistically significant differences in re-
verse engineering the code.

2.2.5 Need for Additional Studies
However, the number and type of subjects in the experi-

ments limit their generalizability:

students are probably not the best choice to model
real subjects. Professional hackers could be bet-
ter subjects to evaluate MATE1 attacks exploita-
tion, but it is considerably difficult to involve
them [32].

Studies with only students or limited number of partici-
pants cannot be generalized to the field of professional/ex-
pert reverse engineers and hackers, yet in all of the previ-
ously cited experiments, the test subjects have been a lim-
ited group of students. As far as we are aware, Ceccato et
al. [11] is the only published human subject reverse engi-
neering study to employ professional experts, albeit with a
small sample size.

Besides Ceccato’s efforts, several challenges generated
by the Tigress obfuscator [14] were hosted on the Tigress
website2. Subjects (anyone on the Internet) were tasked
with turning obfuscated code back into plaintext source and
disclosing a description of their successful attacks. Several
successful submissions by subject matter experts were sub-
mitted, which resulted in publications describing the reverse
engineering methods used to defeat the obfuscations. Sal-
wan et al. [26], for example, employed symbolic execution
and taint analysis to defeat the obfuscation.

2.2.6 Current Methodology Limitations
The usefulness of human subject studies is also limited

by the data collected. Previous efforts [11, 14] manually
requested and analyzed subjects’ reverse engineering strate-
gies. However, conducting thorough analysis, particularly

1MATE stands for Man-At-The-End.
2See http://tigress.cs.arizona.edu/challenges.

html

with high quality subjects, incurs large costs, drastically
limiting scalability, both in terms of subject sample size and
the diversity of the transforms tested.

3 Methodology
Our goal is to collect and analyze data about the strate-

gies employed by reverse engineers. This data can be used
to construct behavioral models which, in turn, can be used
to evaluate the strength of particular obfuscating transfor-
mations against a variety of attacks. Ultimately, these in-
sights can inform the design of new and better transforma-
tions and guide the deployment of current transformations.

To collect and analyze behavioral data, we must address
5 problems, detailed below.

3.1 Generate Obfuscation Challenges

As shown in Figure 1, the first step of RevEngE is to gen-
erate challenges by first generating random programs and
then obfuscating these programs. The generation process
can be described as a 5-tuple Gen:

Gen = (Script1,Asset ,Seed1,Script2,Seed2) (1)

Together, the elements of this tuple uniquely define the chal-
lenges we generate. Gen is kept confidential and it is the
goal of the reverse engineer to recover the asset generated
by Gen given only a compiled3 obfuscated binary as input.

The generation of random programs takes 3 inputs:
Asset is the aspect of the program we want to protect (such
as a security check, a license check, or the source code it-
self), Script1 sets parameters on the language features to
generate (number/size of functions, size of global and lo-
cal state, kinds of control structures, etc), and Seed1 can be
varied to allow us to generate large numbers of unique pro-
grams with the same asset, and with the same parameters.

In the current version of RevEngE, we are asking reverse
engineers to de-obfuscate a challenge, i.e. to transform
an obfuscated binary program back into C code. In other
words, the asset that they have to recover is the source code
of the program itself. In a malware context, malware au-
thors are generally not interested in protecting against com-
plete code recovery. They may, however, be interested in
protecting triggers or unpacking code from begin discov-
ered or disabled using obfuscation. In future work we will
therefore extend our challenges to include different types of
assets, such as where the goal is to disable a security check
or to recover an embedded cryptographic key.

Once programs have been generated, they are obfuscated
(point 2 in Figure 1). This step takes 3 inputs: p0.c is the
generated plaintext C program, Script2 describes the se-

3Source code challenges may be provided in the future as well, but
compiled binaries tend to better match common real world use cases and
thus are more appropriate.
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quence of obfuscating transformations that should be ap-
plied to p0.c, and Seed2 can be varied to allow us to gen-
erate a diverse set of of uniquely obfuscated programs from
the same obfuscation script.

3.1.1 Generating Random Programs
Generating random programs that are suitable targets for

a reverse engineering challenge is a challenging research
problem in itself. We extended the Tigress system’s pro-
gram generator to generate simple programs. Each gener-
ated function is, essentially, a hash function taking a list of
numbers as inputs, and producing a list of numbers as out-
put. A function conceptually consists of three phases: ex-
pansion which seeds a (large) state space from the (small)
input, mixing which introduces control structures (if, while,
switch) to update the state space, and contraction which re-
duces the state space to the output result.

To favor automated attacks, in RevEngE each challenge
consists of multiple unique and obfuscated programs. To
be considered successful, a reverse engineer has to solve all
of them. In other words, in our current implementation a
particular challenge Ci is generated by

Ci =
n︷ ︸︸ ︷

{Geni, . . . ,Geni} (2)

Geni = (scriptgeni , , rnd1, scriptobfi , rnd2) (3)

where the rnd j are pseudo-random numbers and where n,
the number of obfuscated programs per challenge, is 10.

3.1.2 Obfuscating Programs
RevEngE uses an obfuscation tool (Tigress) that contains

numerous types of obfuscating transformations: virtualiza-
tion, self-modifying code, control flow flattening, function
splitting and merging, adding dead code with opaque predi-
cates, encoding expressions with mixed Boolean arithmetic,
encoding data, encoding literal values, anti alias analysis,
anti taint analysis, and hiding API calls. Each transforma-
tion can be customized with numerous variants and options.

As an example of the complexity introduced by obfusca-
tion by virtualization, consider Figure 3 which shows the
virtualized version of the program in Figure 2.

3.2 Recruiting and Rewarding Subjects

To participate, subjects download a virtual machine
image,4 install our monitoring system from http://
revenge.cs.arizona.edu, and select and download
one of our challenges. As part of the installation process
users are also asked to give consent as required by the
approval5 granted by our institution’s Institutional Review
Board (IRB).

4Kali [23], Ubuntu, and Fedora are supported.
5University of Arizona IRB 1610963521.

Figure 2: The control flow graph here derives from a simple,
sample program with a single loop, a few arithmetic opera-
tions, and a print function at the end. LLVM [22] compiled
this program and generated the control flow graph.

Figure 3: This control flow graph resulted from obfuscating
the program in Figure 2 with a virtualization transformation.

At the present time, we have allocated USD 15,000 to
be given out (in amounts of USD 100, 500, or 1,000) to
users who submit successful solutions. The amounts are
dependent on the perceived difficulty of each challenge.

Unlike previous studies which recruited subjects from
student populations or professional red teams, we want to
cast a wider net. There are several risks to the valid-
ity of the results of the study directly related to our abil-
ity to entice qualified reverse engineers to participate: it
may be that our monetary rewards will be too small to at-
tract interesting subjects, or that those with advanced skills
will be unwilling to reveal them, or that clever adversaries
will be able to identify ways to collect the reward with-
out providing us with any useful attack data. It should
be pointed out that our preliminary study (tigress.cs.
arizona.edu/challenges.html) attracted multiple
attackers both from industry and academia, even though the
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rewards were minuscule. We therefore hope that the goals
of RevEngE will provide some motivation to actors who
have an interest in learning the results of the project.

3.3 Data Collection

Understanding reverse engineering behavior will require
understanding of how a human interacts with a set of soft-
ware tools. Such tools include debuggers, tracers, slicers,
disassemblers, decompilers, symbolic analyzers, etc., both
off-the-shelf tools and scripts developed by the human re-
verse engineer to aid in attacking a particular type of soft-
ware protection. It is the goal of the RevEngE’s data collec-
tion framework to collect the interactions between reverse
engineers, the tools that they use, and the challenge pro-
grams they are attacking. In order to comprehensively mon-
itor the actions of a reverse engineer, RevEngE monitors

• processes and events such as file open/close and pro-
cess creation (including arguments);
• window focus changes and data such as x/y-location,

size, and title;
• mouse events and data such as x/y-location and event

type (move, press, . . . );
• any keyboard key presses.

Finally, a screen shot is taken every 15 seconds to collect
data not otherwise captured. Every event is timestamped
and relationships between events are recorded, such as key-
board and mouse input occurring within a particular in-
focus window.

3.4 Correctness and Precision of Solutions

When users submit a proposed solution to a reverse en-
gineering challenge (p3.c in Figure 1), we must determine
whether it is, in fact, an acceptable solution. Two properties
of p3.c must be tested:

• Is p3.c a correct solution, i.e. does it have the same
behavior as the original program p0.c?
• Is p3.c a precise solution, i.e. was the user able to

remove the obfuscation from p2.exe, such that p3.c is
close to the original program p0.c?

A malicious user could submit a program that is simply a
decompiled (but not de-obfuscated) version of the challenge
program, claiming that it solves the challenge. Such as “so-
lution” may be correct, but it is not precise. Or, they may
submit a de-obfuscated program that works for most inputs
but fails for some corner cases. Such a solution may be pre-
cise, but it is not correct.

3.4.1 Correctness
RevEngE checks the solution correctness by testing: The

submitted program is run inside a security sandbox (fire-
jail [1], in our case), on a set of chosen inputs, and the out-
put is compared to that of the original program. This is easy

to do, since the challenge programs are simple hash func-
tions that read input numbers from the command line, and
print output numbers on standard output. The issue is how
to select a set of comprehensive input test cases that will
distinguish a correct from an incorrect proposed solution.

We use two methods for generating test cases. First, we
generate a large number of random inputs Irnd taken from
some distribution. Unfortunately, there is no guarantee that
all paths of the program will be covered by these inputs.

The second technique uses symbolic execution. We run
Klee [7] on the original program p0.c to determine a set of
inputs IKlee which covers as many execution paths as pos-
sible. In order to run Klee, the program’s argument variable
is annotated as symbolic within the code, and Klee’s default
search is run for 7 hours on the resulting program. We found
that few to no additional test cases were found after this pe-
riod of time and have not had success finding additional test
cases with other Klee search algorithms at this time.

We then merge the input sets Irnd and IKlee, and run the
program p0.c on these inputs through a source code cover-
age tool (gcov in our case [6]) to determine what fraction
of the paths are covered by our test cases.

3.4.2 Precision
To evaluate the quality of a proposed solution we need to

measure how similar p3.c is to the original program p0.c.
This could be done statically, for example by comparing the
programs’ control flow graphs, as was done by Krienke [21]
by comparing program subgraphs for similarity. However,
a perfectly acceptable solution might be structurally very
different from the original: the reverse engineer might have
unrolled loops, for example, or inlined functions. In such
cases static code similarly measures would fail.

RevEngE instead compares the execution behavior of the
original and de-obfuscated programs. Even then, we cannot
expect a deobfuscated challenge to execute identically to
the original program, therefore our precision metric has to
be fuzzy. Thus, RevEngE uses a custom-built, LLVM based
instruction counter to track the number of instructions exe-
cuted, and we classify these into groups such as arithmetic,
load/store, branch, etc. These sets of instructions are then
compared to p0.c’s performance for similarity. This pro-
vides a deterministic comparison of high-level LLVM in-
structions executed, allowing a reliable program profile to
be generated, similar to work done by Neustifter [24].

3.5 Analyze and Visualize User Actions

The outcome of our reverse engineering challenges is
data that describes how each user attacked each obfuscated
program in each challenge, and how successful their attack
was. Conceptually, our data consists of a list of tuples

(user , challenge, program, correctness, precision, actions).
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Figure 4: Petri net model of two de-virtualization de-
obfuscation analyses.

For example, the following user action data

〈(u0, C1, 4, correct , 0.9, 〈a0, a1, . . .〉), (4)
(u1, C3, 2, correct , 0.7, 〈b0, b1, . . .〉), . . .〉 (5)

shows that user u0 attempted to reverse engineer the 4th
program in challenge C1 (each challenge contains 10 indi-
vidual programs to attack, see Section 3.1.1), our correct-
ness checks indicate that their attack succeeded, the preci-
sion of the de-obfuscation was 0.9 (see Section 3.4.2), and
the user went through the sequence of actions 〈a0, a1, . . .〉.
Each user action ai is a tuple (time, kind , value) where
time is the timestamp when the action was recorded, kind
describes the type of data that was collected (such as screen-
shot, mouse movement, keyboard input, etc.; see Sec-
tion 3.3), and value is the data collected. An example action
list might look like this:

〈(10:23.04, screenshot , 1.jpg),

(10:23.05,mouseMove, (330, 450)),

(10:23.10,fileOpen, angr), . . .〉

3.5.1 Building Reverse Engineering Models
Ultimately, our goal is to be able to extract reverse engi-

neering models from the collected data. While such models
have been constructed qualitatively by hand in the past, our
data will allow them to be based on the actual actions of
reverse engineers in the field.

Common graphical ways to model attacks are attack
trees and Petri nets [29, 37, 5, 34]. As an exam-
ple, consider Figure 4 which shows a Petri net mod-
eling two types of attack on virtualized code. The
top path 〈p0, t0, p1 . . . , t4, p5, t10, p10〉 represents the static
analysis proposed by Rolles [25] and the lower path
〈p0, t5, p6 . . . , t9, p5, t10, p10〉 represents the dynamic anal-
ysis proposed by Yadegari et al. [35]. The ti are transi-
tions, actions performed by reverse engineers, and the pi are
states. A successful attack is a path from p0 to the terminal
state, in this case p10, which represents the acquisition of
de-obfuscated source code.

Thus, an attack Petri net is a 6-tuple [34]

(states, transitions, arcs, paths, rate, cost)

Figure 5: The visualization component for RevEngE’s data
collection consists of a Gantt chart of in-focus windows and
task events per user session; selecting a rectangle shows ad-
ditional information such as screenshots and the process in-
formation.

where rate represents the rate of attack progress, and
cost(ti) represents the cost (to the attacker) of taking a par-
ticular transition ti. It is the goal of RevEngE to examine
the collected data and recover states , transitions , and arcs
from the sequence of actions that the reverse engineer has
performed, and to recover rate and cost by examining the
time and memory consumed performing these actions.

3.5.2 Visualization of User Actions
Figure 5 shows the visualization component of RevEngE

which will allow us to interactively explore the action events
and manually build the attack graph. The visualization
presents events along a Gantt chart timeline with current
task information presented below. Ultimately, we would
like to automatically extract Petri net attack graphs from
the collected user action data. We are currently investigat-
ing how to combine sequence and time series analyses, ma-
chine learning classification techniques, and additional vi-
sualization techniques to accomplish this.

4 Evaluation
To be successful, RevEngE needs to be able to properly

evaluate submitted programs, and the overhead of data col-
lection must not discourage reverse engineers from using
the system. We evaluate these issues next.

4.1 Correctness analysis

To determine whether a submitted program in fact solves
a challenge, we need to determine that it is equivalent to the
original, generated, random program. We use two meth-
ods to generate test cases to compare the two programs
for equivalence: symbolic analysis using Klee, and random
generation from a distribution. Figure 6 shows the path cov-
erage that these methods achieve.

On average, we achieve 85% coverage. In the future
we will remedy this by a) using multiple symbolic analy-
sis engines which use different search strategies, b) extend-
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Figure 7: CPU and RAM usage for two data collection runs,
one on an x86 device and one on an ARM device, both using
an Ubuntu virtual machine.

ing symbolic analysis with fuzzing [28]. Currently, when
we still fail to achieve 100% coverage, we re-generate the
random challenge program.

4.2 Overhead of data collection

RevEngE’s data collection software must be relatively
transparent, such that it does not interfere with subjects’
ability to reverse engineer. In our experiments, the data
collection occupied about 120% of a single x86 core CPU
and 40% of 4 GB of memory after executing for about 1.68
days. Figure 7 shows an ARM device that was allocated
2 GB of memory and left executing for 1.2 hours reaching
102% of a single core usage and 20% of memory usage. The
device was significantly laggy—though usable—compared
to the x86 virtual machine with additional resources.

After executing for 1.68 days on a high resolution
(1920x1440) display, the initial x86 data collection trial run

had accumulated about 1 GB of screenshot data, and an-
other 400 MB of process data—these two polled resources
dwarf all other data by at least an order of magnitude.

5 Conclusion
The field of code obfuscation and reverse engineer-

ing lacks confidence in methods. Where many fields
have demonstrated methods’ efficacy through challenges
of various types—particularly cryptography with the RSA
Challenge—no such effort has demonstrated the hardness of
different obfuscation techniques and, inversely, the strength
of reverse engineering methods to counter them.

In this paper we introduce the RevEngE competition
which generates reverse engineering challenges. Using
novel data collection and auto-grading capabilities, Re-
vEngE promises to efficiently and objectively evaluate par-
ticipants’ methods to defeat code obfuscations.

Sharing Statement: The RevEngE system can be ac-
cessed at http://revenge.cs.arizona.edu. All
the source code is freely available at https://github.
com/cgtboy1988/RevEngE. The binary for Tigress
used to generate challenges can be downloaded from
http://tigress.cs.arizona.edu (source code is
available to researchers on request). Properly anonymized
data generated by the system will be made freely available
to the research community.

This work was supported by NSF award 1525820.
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[37] G. Zhang, P. Falcarin, E. Gómez-Martı́nez, S. Islam, C. Tar-
tary, B. De Sutter, and J. d’Annoville. Attack simulation
based software protection assessment method. In Cyber Se-
curity And Protection Of Digital Services (Cyber Security),
2016 International Conference On, pages 1–8. Ieee, 2016.

[38] Y. Zhou, A. Main, Y. X. Gu, and H. Johnson. Informa-
tion hiding in software with mixed boolean-arithmetic trans-
forms. In Proceedings of the 8th International Conference
on Information Security Applications, WISA’07, pages 61–
75, Berlin, Heidelberg, 2007. Springer-Verlag.

http://citeseer.ist.psu.edu/wang00security.html
http://citeseer.ist.psu.edu/wang00security.html

	Introduction
	Related Work
	Obfuscation
	Analyzing Obfuscation Resilience
	Normative Evaluation
	Software Metrics
	Empirical Studies
	Human Studies
	Need for Additional Studies
	Current Methodology Limitations


	Methodology
	Generate Obfuscation Challenges
	Generating Random Programs
	Obfuscating Programs

	Recruiting and Rewarding Subjects
	Data Collection
	Correctness and Precision of Solutions
	Correctness
	Precision

	Analyze and Visualize User Actions
	Building Reverse Engineering Models
	Visualization of User Actions


	Evaluation
	Correctness analysis
	Overhead of data collection

	Conclusion

